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ABSTRACT 

A real-time system must execute functionally correct computations in a timely manner. 

Most of the current real-time systems are static in nature. However in recent years, the growing 

need for building complex real-time applications coupled with advancements in information 

technology, drives the need for dynamic real-time systems. Dynamic real-time systems need 

to be designed not only to deal with expected load scenarios, but also to handle overloads 

by allowing graceful degradation in system performance. Value-based scheduling is a means 

by which graceful degradation can be achieved by executing critical tasks that offer high 

values/benefits/rewards to the functioning of the system. This thesis identifies the following 

two issues in dynamic real-time scheduling: (i) maintaining high system reliability without 

affecting its schedulability and (ii) providing graceful degradation to the system during overload 

and maintaining high schedulability during underloads or near full loads. Further, we use 

value-based scheduling techniques to address these issues. 

The first contribution of this thesis is a reliability-aware value-based scheduler capable of 

maintaining high system reliability and schedulability. We use a performance index (PI) based 

value function for scheduling, which can capture the tradeoff between schedulability and relia-

bility. The proposed scheduler selects a suitable redundancy level for each task so as to increase 

the performance index of the system. We show through our simulation studies that proposed 

scheduler maintains a high system value (PI). The second contribution of this thesis is an 

adaptive value-based scheduler that can change .its scheduling behavior from deadline-based 

scheduling to value-based scheduling based on the system workload, so that it can maintain 

a high system value with less deadline misses. Further, the scheduler is extended to hetero-

geneous computing (HC) systems, wherein the computing capabilities of processors/machines 
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are different, and propose two adaptive schedulers (Basic and Integrated) for HC systems. 

The performance of the proposed scheduling algorithms is studied through extensive simula-

tion studies for both hoII1ogE!I1eO_lJS apd h_e_te:rogeneous computing systems. We have concluded 

that the proposed adaptive scheduling scheme maintains a high system value with less dead-

line misses for all range of workloads. Amongst the schedulers for HC systems, we conclude 

that the Basic scheduler, which has a lesser run-time complexity, performs better for most of 

the workloads. The last contribution of this thesis is the design and implementation of the 

proposed adaptive value-based scheduler for homogeneous computing systems in a real-time 

Linux operating system, RT-Linux. We compare the performance of the implementation with 

EDF and Highest Value-Density First (HVDF) schedulers for various ranges of workloads and 

show that the proposed scheduler performs better in maintaining a high system value with less 

deadline misses. 
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CHAPTER 1. Introduction 

1.1 Introduction 

Real-time systems are being extensively used in wide range of systems and domains, such 

as flight controllers, autonomous vehicle controllers, nuclear plant controllers, robotics, defense 

systems and medical systems. The distinct feature of real-time system is the correctness of 

these computing systems depends not only on the logical result of their computations but 

also on the time at which the result is produced. Thus, every computational task needs to 

completed before a deadline and failure to meet the deadline of a task can result in undesirable 

consequences depending on the criticality of the task. 

Real-time systems need to be predictable and reliable. Predictability is a feature that is 

unique to real-time computing, which requires the ability of the system to determine whether 

the system will be able to meet the timing requirements of tasks. Ensuring predictability in 

a real-time system requires scheduler and analytical models that can guarantee tasks, their 

timing or other service guarantees, apriori or at run time. Reliability is the ability of the real-

time system to execute tasks in a reliable manner, subject to certain workload and failure (such 

as hardware/software faults) assumptions, maximizing the probability of successful execution 

of tasks. Being fast is not a necessary condition in real-time system, but can be useful, as 

the system's primary objective is to meet deadlines and scheduling based on average case to 

improve throughput will harm the first and foremost essential quality, predictability. 

1.2 Real-Time Tasks 

Since a computational task is time constrained in a real-time system, every task is associated 

with deadline, the time by which a task needs to complete its execution. Traditionally, real-time 
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Deadline Deadline Deadline 

Value Value Value 

Time Time Time 

Hard Real-Time Task Firm Real-Time Task Soft Real-Time Task 

Figure 1.1 Value-Time dependence for real-time tasks 

tasks are classified into periodic or aperiodic tasks, based on their activation time. Periodic 

tasks are activated at regular intervals and are characterized by a computation time C and a 

period (frequency of activation) P, with deadline usually set to the end of period (e.g., sensor 

acquisition tasks). Aperiodic tasks are activated at irregular intervals, due to occurrence of 

an event (e.g., fault handler tasks) and is characterized by ready time R, computation time 

C, and deadline D; these parameters are known only upon task's arrival. Real-time tasks are 

classified into hard, firm or soft [5], based on their criticality and the value they offer to the 

system upon successful execution. The relation between value and time for these tasks are 

given in Figure 1. 1. Hard tasks are extremely critical tasks, whose deadline misses might lead 

to catastrophic consequences. Missile controllers, flight controller tasks are examples of hard 

tasks. Firm tasks are less critical than hard tasks but does not offer value after its deadline 

( e.g., online transaction processing). Soft tasks are those which offer value (upon execution) 

to system even after its deadline (e.g. , desktop video player). 

1.3 Scheduling in Real-Time Systems 

The operating systems community has extensively studied scheduling of processes without 

timing constraints. However, traditional general purpose schemes such as First In First Out, 

shortest job next or round robin are not appropriate for real-time systems. These scheduling 

policies aim to reduce the average response time and do not deal with timing constraints. 

The problem of real-time scheduling is to allocate processors (including resources) and time 

to tasks in such a way that certain performance guarantees, such as timing requirements and 
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reliability requirements, are met [l] . The process of real-time scheduling involves two steps: (i) 

Schedulability Check - that involves checking to see if the tasks' timing, reliability and resource 

requirements can be met and (ii) Schedule Construction - that involves actual construction 

of task schedule in such a way that task deadlines are met, in addition to meeting other 

requirements. 

Real-time scheduling algorithms can be classified into four types (1) based on (i) whether the 

schedulability checking is done offiine/online or not at all and (ii) whether schedule construction 

is done offiine/online. Based on this , real-time scheduling algorithms are classified as shown 

in Figure 1.2. A brief description of each class of algorithm is given as follows: 

• Static table-driven schedulers: These schedulers perform offiine schedulability check and 

construct the schedule also offiine and stores the result in the form of a table to be used 

by the dispatcher at run-time. This is a highly predictable approach but has the problem 

of repeating the schedulability check and schedule construction even for a small change 

in task set. 

• Priority-driven schedulers: These schedulers perform schedulability check offiine but con-

struct the schedule at run-time. Based on the nature of task 's priority used by the 

scheduler, it is classified as follows: 

l. Static priority-driven schedulers use static priorities for dispatching tasks e.g., Rate 

Monotonic Scheduler (RMS) [4]. RMS uses period as the priority metric (lower the 

period higher the priority) , which is determined upon arrival of a task. 

2. Dynamic priority-driven schedulers use dynamic priorities for task dispatching such 

as deadline or laxity. Earliest Deadline First (EDF) (4] is an optimal scheduling 

algorithm for uniprocessor systems under dynamic priority assignment and uses 

deadline as priority metric ( earlier the deadline, higher the priority) . Least Laxity 

First (LLF) is another optimal scheduling algorithm for uniprocessor systems which 

uses laxity ( defined as the amount of time till which task can wait and still meet its 

deadline) as the priority metric (lower the laxity, higher the priority) . 
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Real-Time Schedulers 

Static Dynamic 

Table-Driven Priority-Driven Planning-based Best Effort 

(offiine, offiine) (offiine, online) (online,online) (-.online) 

e.g., RMS. EDF e.g. , Myopic e.l!-. EDF+L VDF 

Figure 1.2 Classification of Real-Time Scheduling Paradigms 

• Dynamic Planning-based schedulers: These schedulers perform schedulability check at 

run-time and construct the schedule also at run-time, i.e. , a dynamically arriving task 

will be accepted if it is found to be schedulable. These schedulers are used in system 

wherein the tasks' characteristics are not known apriori . Myopic Scheduler [2] used in 

Spring Kernel, is an example of dynamic planning-based scheduler. 

• Dynamic best-effort schedulers: These schedulers do not perform schedulability check 

and these systems try to do their best in meeting deadlines of the tasks. Any task may 

be aborted during its execution, as the system gives no guarantee for its completion. 

1.3.1 Dynamic Planning-based Schedulers 

The problem of dynamic scheduling in a multiprocessor system is to determine when and 

on which processor a given task is to be executed, with no apriori knowledge of task charac-

teristics. There exists no optimal dynamic scheduler that can schedule tasks with no apriori 

knowledge [5]. Hence, many heuristics are proposed for this scheduling problem [2 , 3] . In dy-

namic planning-based schedulers, the task characteristics are known only at run-time and the 

scheduler's job is to ensure predictability in such an environment (using online schedulability 

check) , to see if the task can be guaranteed to meet its deadline. Dynamic planning-based 

scheduling consists of three main activities: schedulability checking, schedule construction and 

dispatching (task execution). Planning-based schedulers usually use non-preemptive sched-
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ules thereby making schedule construction and dispatching independent. A popular dynamic 

planning-based scheduler, Myopic [2] is described below. 

Myopic Scheduler 

Myopic scheduler uses a heuristic search algorithm for scheduling tasks with resource con-

straints in a multiprocessor system. The algorithm uses a branch and bound search technique 

wherein a vertex in the search represents a partial schedule and extends the search tree by 

extending the vertex by selecting one task at a time among a set of tasks, the set is called 

feasibility check window. The schedule from a vertex is extended only if the vertex is strongly 

feasible. A vertex is strongly feasible only if a feasible schedule can be generated by extending 

the current partial schedule with each task in the feasibility check window. The larger the size 

of the window, the higher is the look-ahead nature and the more is the scheduling cost. The 

algorithms starts with an empty schedule as root node of the search tree and tries to find a 

fully feasible schedule, leaf node of search tree. The algorithm computes a heuristic function 

(H) for each task in the feasibility check window, based on the deadline and earliest start time 

of the task. It then extends the partial schedule by extending the vertex with best (small-

est) heuristic value. Otherwise, it backtracks to the previous vertex and then the schedule is 

extended from there using a task which has the next best heuristic value. 

1.4 Motivation: Issues in Dynamic Scheduling 

In dynamic real-time scheduling, since the task's characteristics are known only at run-

time, ensuring predictability and providing various guarantees, such as timing and reliability 

guarantees become a challenging problem. Different scheduling approaches are used to ad-

dress this problem and figure 1.3 outlines these scheduling approaches, their attributes and 

mechanisms. The first popular scheduling approach is deadline-based scheduling, wherein the 

scheduler schedules tasks based on deadline. This involves schedulability check and schedule 

construction. These schedulers aim at improving the overall schedulability of the system and 

perform well during normal workloads. When the system's workload is unpredictable, schedul-
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Deadline-based Scheduling 

(Schedulability) 

Schedulability Check 

Schedule construction 
(based on deadline) 

6 

Dynamic Scheduling 

Robust Control Scheduling 

(Robust Control. Graceful Degradation) 

Sys<em Monitoring r Sys<em Acruatioo 

Value-based Scheduling 

(Graceful Degradalion, System Reliability) 

f Value Characterization · 
Reliability, Criucality based values etc.) 

Value maxunization and 
system adaptauon : 

Figure 1.3 Dynamic Scheduling Paradigms 

ing approaches such as Robust control scheduling [6) and value-based scheduling [7] are used to 

provide graceful degradation and robust performance. 

Robust control schedulers are used to achieve robust system performance and graceful 

degradation amidst unpredictable workload. These schedulers monitor the system performance 

periodically, and use system level actuators (such as task execution time controllers, admission 

controllers) to control and achieve required system performance. 

Value-based Schedulers are used to provide graceful degradation to the system during 

system overloads or to achieve high system reliability. These schedulers schedule tasks with 

an objective of maximizing the overall value (utility) of the system. Value-based scheduling 

has two important steps: The first step is value characterization, i.e. , identifying the value of 

individual tasks, based on their criticality, reliability, or schedulability and the second step is 

to schedule tasks to maximize the overall value of the system. Based on the nature of the value 

functions used, the value-based scheduler also has different attributes. For example, a value-

based scheduler employed with a value function based on criticality, schedules task to offer 

graceful degradation during overloads and a value-based scheduler that employs reliability-

based value function schedules task to maintain high system reliability. 

The research work presented in this thesis identifies some issues in dynamic real-time 

scheduling (highlighted in Figure 1.3) and propose value-based scheduling schemes for the iden-

tified problems/issues. The following are the dynamic scheduling issues/problems addressed 

in this thesis: 
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• Reliability-aware dynamic scheduling: We study the problem of guaranteeing re-

liability requirements at run-time, with the aim of increasing the overall reliability of 

the system, without affecting the schedulability of the system. We have observed the 

tradeoff between schedulability and reliability in a real-time system and propose a dy-

namic planning-based scheduler that can guarantee reliability requirements at run-time 

and also maintain a high schedulability (low deadline misses). 

• Dynamic scheduling under various workloads: We address the problem of dynamic 

real-time scheduling under varying workloads such as lightly loaded, fully loaded and 

overloaded systems. We observe the need for predictable scheduling behavior during 

overloads, but also the need for maintaining high schedulability (maintaining low deadline 

misses) during underloads or near full loads. Further, we study this problem in the 

context of heterogeneous real-time systems, wherein the processors have heterogeneous 

computing capabilities, and propose two dynamic real-time schedulers for these kind of 

systems. 

1.5 Contribution of this thesis 

The work presented in this thesis is a continuation to the research efforts in the area of 

value-based scheduling in real-time systems. The first contribution of this thesis is a reliability-

aware value-based scheduler for multiprocessor real-time systems, which aims at maintaining 

a high system reliability and schedulability at the same time. The second contribution of the 

thesis are new adaptive value-based scheduling schemes for homogeneous and heterogeneous 

multiprocessor real-time systems that can maintain a high system value with minimal dead-

line misses during overloads and maintain high success ratio during underloads and near full 

loads. The third contribution of this thesis is the design and implementation of the proposed 

adaptive value-based scheduling scheme in a real-time Linux operating system, RT-Linux [23) 

and evaluating the effectiveness of the proposed scheduler through experimental evaluations. 



www.manaraa.com

8 

1.6 Organization of the thesis 

Chapter 2 describes in detail the issues in dynamic real-time scheduling, such as reliability-

aware scheduling, robust scheduling in various workloads and motivates the need for proposed 

scheduling approaches. Chapter 3 presents the reliability-aware value-based scheduler, chapter 

4 presents the proposed adaptive value-based dynamic scheduling algorithms for homogeneous 

and heterogeneous computing systems. Chapter 5 presents the implementation details of the 

proposed adaptive value-based scheme in RT-Linux and the performance results of the sched-

uler in comparison with two other existing schedulers. Chapter 6 presents the conclusion drawn 

from the experiment results, and suggests possible future works. 
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CHAPTER 2. Fault Tolerant Scheduling and Overload Handling 

2 .1 Introduction 

Multiprocessors and multicomputers based systems have emerged as a powerful computing 

means for real-time applications such as avionic control and nuclear plant control, because of 

· their capability for high performance and reliability. The use of real-time systems in systems 

handling dynamic events, such as missile control systems, autonomous vehicle controllers, radar 

controller systems and distributed sensor networks [24) demands efficient dynamic scheduling 

algorithms. The traditional myopic [2) or parmyopic [3] scheduling algorithms fail to capture 

various issues in dynamic scheduling. In this chapter, we present some issues that needs to 

be addressed in the context of dynamic scheduling and motivate the need for value-based 

scheduling techniques for the identified problems. 

The rest of the chapter is organized as follows: In Section 2.2, we discuss the need for fault-

tolerance in real-time systems, in section 2.3 we discuss the issues and traditional approaches 

in tolerating physical faults in a real-time system, identify the tradeoff between reliability and 

schedulability and need for a dynamic scheduler that captures this tradeoff. In section 2.4, we 

discuss the issues that arise due to overloads in dynamic real-time systems and motivate the 

need for a scheduler to exhibit adaptive scheduler. 

2.2 Fault-tolerance in real-time systems 

As mentioned earlier, tasks in real-time systems are critical in nature. In critical appli-

cations, such as space shuttle controllers and nuclear power plant controllers, it is important 

that tasks meet their deadlines under all circumstances. These circumstances includes faults 

generated by various factors such as power fluctuations, processor failure, software bugs, etc. 
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Fault-tolerance is defined as the ability of the system to deliver the expected service in the pres-

ence of faults. Though the issue of fault-tolerance is addressed in other fields of computing, the 

solutions cannot be directly applied in real-time systems as the dependability requirements [25] 

cannot be addressed independent of timing requirements. In other words a real-time system 

may fail to function correctly either because of faults in its hardware and/or software faults 

or because of not responding in time due to overloads ( timing faults). Hence, to avoid the 

catastrophic consequences of missing deadlines, it is essential that real-time tasks meet their 

deadlines even in the presence of faults and/ or overload conditions. 

2.3 Tolerating system faults 

The need for fault-tolerance in real-time systems is recognized by both real-time and fault-

tolerance research communities. In [26], authors identify the need for fault tolerance in real-

time systems by saying that "real-time systems must be sufficiently fault-tolerant to withstand 

losing large portions of hardware or software and still perform critical functions". Thus, re-

search in fault-tolerant systems has led to the development of responsive systems [27], MARS 

system [28] and HARTS [29] . 

Faults are tolerated in real-time systems using redundancy [14] , which are of three kinds: 

hardware redundancy, software redundancy and time redundancy. Hardware redundancy is 

the addition of extra hardware to the system, such as spare processors that are used in case 

of failure of running processor. Software redundancy is the use of extra software modules to 

verify the results, or to use multiple versions of a program. Time redundancy is providing 

additional time to task to re-execute in case of failure . 

2.3.1 Real-time fault tolerant scheduling algorithms 

The goal of a fault-tolerant scheduling algorithm is to guarantee the recovery of real-time 

task in case of failure. As stated earlier, the faults are usually tolerated by executing multiple 

versions of the task either in the same processor or in multiple processors. More than one 

version of a task can be scheduled on a single processor, if faults expected are only transient 
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(temporary malfunction) in nature. If the faults are permanent in nature, such as failure of 

processor, then multiple versions of a task needs to be scheduled in different processors. Two 

major techniques evolved for fault-tolerant scheduling of tasks and are given as follows: 

• N-Version Programming [30]: Here multiple versions of tasks are executed concur-

rently in different processors and the results produced by these processors are voted on. 

The voter, which is assumed to be reliable, compares the output and selects the majority 

vote. This approach is based on the principle of design diversity, wherein multiple ver-

sions of the same task are created by employing different algorithms, different languages, 

and/or programmers. 

• Recovery Blocks [31]: This technique uses multiple alternates to perform same func-

tion. The version that is executed first is called the primary, and the others secondary. 

At the end of execution of primary, an acceptance test determines whether the output is 

acceptable or not. If not, the secondary versions are executed until an acceptable output 

is obtained or the deadline is missed. 

2.3.2 Reliability vs. Schedulability 

As stated above, fault-tolerance in real-time systems is realized by redundancy, using tech-

niques such as NVP. In NVP, the number of versions that are concurrently executed determines 

the reliability of execution of a task. Higher the number of versions executed concurrently, 

higher is the reliability of a task. For example, in a IO-processor system, with each processor 

having a reliability of 0.9, the reliability of a task executing with one version is 0.9, with two 

versions is 0.99 and with 3 versions is 0.999 . Thus, it can be seen that with increase in number 

of versions executed, the task reliability increases. However, it must be noted that increasing 

number of versions of one task can lead to missing of deadlines of other tasks in the system. 

Thus, it can be seen that there is a tradeoff between reliability and schedulability in a real-time 

system and it is the responsibility of the scheduler to capture this tradeoff. 
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2.3.3 Related Work 

The primary issue in fault-tolerant scheduling is to find the correct redundancy level for each 

task so that the system's reliability is maintained with high schedulability. Various scheduling 

algorithms were proposed to capture this tradeoff between reliability and schedulability. Some 

of them are described as follows: 

Spare-capacity scheduling: In [15], an algorithm was proposed with fault-detection and 

location capabilities for real-time systems based on the myopic algorithm. The objective of the 

algorithm was to improve the schedulability and to use the spare capacity of idle processors for 

fault-detection and location. Thus, the algorithm's emphasis is on schedulability of the system 

than reliability. Further, this algorithm does not consider the value parameters into account 

for making a scheduling decision. Such an algorithm is inadequate when tasks have different 

rewards ( or penalties) for their successful executions ( or failures). 

Performance index scheduling: In this context, an approach is proposed in [12] to determine 

the redundancy level for a given set of tasks so as to maximize the total performance index 

which is a performance-related reliability measure. This approach is used in dynamic planning 

based scheduling where decisions are taken ru; tasks arrive. In such a system with m processors, 

n tasks arrive at a particular point in time. The approach tries to find the best redundancy level 

for each task such that the overall performance index is maximized. Once a task redundancy 

level is determined, a task is said to be guaranteed if the given number of copies of the task are 

all scheduled to complete before the task's deadline. Suppose a task Ti provides a reward ¼, 

if it completes successfully once it is guaranteed, a penalty Pi if it fails after being guaranteed, 

and penalty Qi if it is not guaranteed. Let Ri be the reliability of a task and Fi be its failure 

probability, where~ = 1 - Fi. The redundancy level of a task Ti and the failure model of the 

processors affect Ri. The performance index P Ii for task Ti is defined as 

, if Ti is guaranteed 

, if Ti is not guaranteed 
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Then, the performance index for a task set containing n tasks is defined as: 

In [16], another dynamic fault-tolerant scheduling algorithm was proposed, where the my-

opic algorithm was modified to schedule tasks aiming to maximize the overall PI of the system. 

However, the algorithm by its nature selects the maximum redundancy level (an input param-

eter) as the chosen redundancy level for each task. Such an approach of considering only one 

task at a time for determining the redundancy level for the task set can lead to poor overall 

performance index, which is the motivation for the first work of the thesis. 

2.4 Overload Handling in Real-Time Systems 

As mentioned earlier, dynamic real-time scheduling algorithms need to ensure predictability 

without having apriori knowledge of task characteristics. Dynamic algorithms such as [2 , 3] 

behave in a predictable manner during underloads when the system is not utilized to its fullest 

capacity. However, these algorithms do not behave in a predictable manner during overload 

conditions and can lead to instability of the system due to missing of deadlines of tasks that 

are critical to the functioning of the system. Hence, a new scheduling paradigm called value-

based scheduling is employed, which schedules tasks such that the overall value (i.e. , utility) 

of the system is maximized and allows the system to degrade gracefully during overloads. It 

is assumed that each task offers certain "value" to the system, if it meets its deadline. Thus, 

value-based scheduling is a decision problem involving the choice of tasks to execute so that 

the overall system value is maximized [7]. However, this problem is also intractable and several 

heuristics have been proposed [8, 9]. 

Such a scheduling is of immense use in a flexible real-time system, wherein the system is 

expected to take decisions at run-time for efficient resource usage and also for system stability 

and any design phase decision might lead to pessimistic usage of resources. An example 

of a flexible real-time system is an autonomous vehicle controller [7], wherein the system 

needs to exhibit intelligent and adaptive behavior in order to function in a highly dynamic 
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and non-deterministic environment characterized by unpredictable nature of other vehicles, 

route information, weather and road conditions. Such a real-time system has two conflicting 

objectives: (1) guaranteeing safety and mission critical tasks to provide results of acceptable 

quality and (2) to increase the system utilization (and schedulability) determined by frequency, 

timeliness and precision, by scheduling as much tasks as possible. A typical example for 

need of adaptive behavior in such a system can be understood by the following scenario: In 

the autonomous vehicle controller system, under normal driving scenarios, a service such as 

headlight controller that determines the amount of light to be flooded based on the weather 

conditions must be scheduled in time for obtaining proper lighting performance. However, 

such a service is of least importance when the car is in verge of collision and services such as 

collision control and brake control needs to be run with the highest priority. Hence, the system 

needs to adapt itself to the environment and conditions accordingly. 

In [11], the tradeoff between value vs. deadline scheduling has been studied in detail. The 

paper concludes that there is a need for different scheduling behaviors under different load 

scenarios. Consider the following simple example with two tasks in a uniprocessor system, 

where a task Ti is characterized by < Vi , Ci , di > (vi - value offered by Ti , Ci - computation 

time of Ti , di - deadline of Ti) : T1 : < 10, 20, 30 >, T2 : < 100, 50, 80 >. For scheduling these 

two tasks in a real-time system at time 0, scheduling based on deadline will meet the deadline 

of both the tasks (with T2 scheduled after T1) , if the system is lightly loaded and execute 

both the tasks before their deadlines. However, if the system is highly loaded, then a deadline 

scheduling scheme might result in missing the deadline of a higher valued task. Hence, during 

overloads, value-based scheduling scheme is preferred (with T2 scheduled before T1). Thus, 

it can be clearly seen from this simple example that there is a need for different scheduling 

behavior such as deadline based scheduling under light loads and value-based scheduling during 

overloads. The first part of the second work of this thesis is to develop an adaptive value-based 

scheduler for homogeneous computing systems that adapts its scheduling behavior based on 

the current workload. 
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2.4.1 Real-time scheduling in Heterogeneous Computing Systems 

Most of the multiprocessor scheduling algorithms in the literature [2 , 3] assume that the 

processors have homogeneous computing capabilities. However, an emerging trend in com-

puting is to use distributed heterogeneous computing (HC) systems [17, 18], wherein the ma-

chines/processors differ in their computing capabilities. Though significant amount of research 

has been done on scheduling algorithms for heterogeneous systems [19, 20], these algorithms are 

studied in the context of non real-time systems. For example, several algorithms were proposed 

in [20] for HC systems aiming at minimizing the schedule length, which is not a suitable metric 

for scheduling in real-time systems. In [21], a reliability driven real-time scheduling algorithm 

is proposed for HC systems, where scheduling is done based on the reliability of a task on a 

processor to improve the reliability. However, even the issue of dynamic real-time scheduling 

in a HC system itself is yet to be clearly addressed. As a part of the second component of 

this thesis, we propose a dynamic scheduling algorithm for HC systems that maintain a high 

system value with minimal deadline misses. 

In this thesis, we propose value-based scheduling techniques for the above two identified 

problems: (i) reliability-aware scheduling and (ii) dynamic value-based scheduling (with mini-

mal deadline misses). 
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CHAPTER 3. Reliability-Aware Value-based Scheduler 

3 .1 Introduction 

In this chapter, we present a reliability-aware value-based scheduler for a multiprocessor 

real-time system. The objective of the proposed scheduler is to increase the overall reliability of 

the system with less degradation in schedulability at the same time. In this chapter, we consider 

the fault-tolerance related value function, PI, that captures the tradeoff between schedulability 

and reliability, and propose a scheduling algorithm to maximize the overall performance of the 

system. Further, the proposed dynamic scheduler differs from traditional dynamic real-time 

scheduling (search) algorithms, as it extends the task schedule with more than one tasks at 

a time. The reason for such a task scheduling is as follows: Since PI of a task increases 

with increase in redundancy levels, just considering only one task at a time for extension of 

schedule will always lead to selection of the highest value task with highest redundancy level 

of execution. Hence, it would be beneficial to extend the schedule with more than one task 

at a time in terms of yielding a better PI. Thus, the proposed reliability-aware value-based 

scheduler uses a dynamic branch and bound search algorithm similar to myopic that extends 

the task schedule possibly with more than one task at at time. The rest of this chapter is 

organized as follows: In section 3.2 we present the system model and terminology used in the 

chapter and present the proposed scheduler in section 3.3. We evaluate the performance of the 

proposed algorithm in section 3.4. 

3.2 System Model and Terminology 

• The system model is shown in Figure 3.1. As shown in the figure, system consists of 

task queue in which the real-time tasks enter the system, which are scheduled by the 



www.manaraa.com

17 

scheduler and placed in the appropriate dispatch queues of processors. 

• The system consists of m processors having identical reliability. 

• Each task Ti is characterized by ready time (ri), worst-case computation time (ci) , dead-

line (di), reward value (¼) and penalty values (Pi and Qi)- Further tasks are assumed 

to be aperiodic and non-preemptable. 

• Let p be the reliability of a task (with one version), ~' executing on a single processor. 

Then, the reliability (Ri) of the task with r versions is given by~ = 1 - (1 - Pt-

• A task Ti is said to feasible only if EST(Ti1) + Ci ::S di, where EST(~1) denotes the 

earliest start time for task Ti with one version. 

• Let A be the set of tasks in the feasibility check window, of size K, then the partial 

schedule obtained is strongly feasible if all the schedules obtained by executing the current 

schedule to the unscheduled task set is also feasible. i.e., Vi, TiEA, EST(Ti1) + Ci ::S di 

• The performance of a task Ti for a redundancy level j is defined as : 

where, Fi= (1 - p)J and~= 1 - Fi-

¼~ - PiFi, ifj>O 

-Qi, ifj = 0 

3.3 Proposed Reliability-aware Value-Based Dynamic Scheduler 

(3.1) 

In this section, we present the reliability-aware dynamic scheduling algorithm that aims at 

maximizing the overall value (performance index) of the system by finding the right redundancy 

level for each task. The proposed algorithm is a variant of myopic algorithm. The myopic 

algorithm works on extending on a partial schedule P, by one task at a time. Initially it 

considers all the K tasks (in the feasibility check window) and checks if they are feasible. If 

it is strongly feasible then it extends the schedule by task~ that offers the smallest heuristic 
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value H(.), out of the all the tasks in its feasibility check window. If the current schedule is 

not strongly feasible, the algorithm backtracks and selects the task that offers the next best 

heuristic value. 

The proposed scheduling algorithm, as given in Figure 3.3, starts of similar to that of the 

myopic scheduling algorithm, by considering K tasks in the feasibility check window, A. If 

the current schedule is strongly feasible , then the algorithm selects the right combination of 

task with their appropriate redundancy level by the Combination Selection Algorithm, such 

that the overall performance index of the task set in A is maximized and the total number 

of tasks (including the redundant tasks) is less than or equal to L, the maximum schedule 

extension size. Then, the scheduling order of the tasks is determined by the Order Selection 

Algorithm, and the schedule is extended with specified order of the selected combination. If 

the selected order for a combination is not feasible to schedule, then task schedule is extended 

with different order until a feasible order is obtained. If all the orders are exhausted, then the 

task schedule is extended with next best combination that offers the next best PI value with 

the order being selected for the new combination. This process is repeated until a feasible 

schedule is obtained or until all combinations are exhausted. The key difference between the 

proposed scheduler and the conventional myopic scheduler is that in the former, the schedule 

is extended by L tasks at a time, while it is extended by only one task at a time at the latter. 
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Here, the value of L can be less than or equal to or more than the number of processors in 

the system. The value of L affects the effectiveness of the algorithm, with increased value of 

L reducing the total number of scheduling decisions. Similarly, the value of K also affects the 

effectiveness of the algorithm, as K represents the look-ahead nature of the scheduler. Higher 

the value of K , higher is the number of tasks considered in the search and hence the chance of 

the scheduler to come up with a task set giving a better value is increased. 

3.3.1 Combination Selection Algorithm 

The objective of the combination selection algorithm is to come up with right combination 

of tasks with their appropriate redundancy levels such that overall performance index of the 

system PI is maximized. Thus, the combination selection algorithm takes the task in the 

feasibility check window as input and extends the schedule upto L tasks, such that the selected 

combination gives the maximum PI. The combination selection algorithm can be considered 

as a search algorithm, which searches for the correct combination of redundancy levels of 

tasks that leads to the maximum PI, which are feasible to schedule. Hence the issue in this 

algorithm is the depth of search to be carried for every task-set scheduling to attain a good 

combination yielding the best or near-best PI. For example, if the number of tasks within 

the feasibility check window A is K and the maximum redundancy level of a task is r, then 

the combination selection at the maximum must search all combinations ( of order O(rK)) to 

guarantee an optimal solution. We propose two combination selection algorithms, Exhaustive 

Search and Reduced Search, in this section that can come up with an optimal or near-optimal 

solution with the first algorithm incurring high computation cost for optimal solution whereas 

the second algorithm incurs less computation cost for near-optimal solution. 

3.3.1.1 Exhaustive Search Algorithm 

The exhaustive search algorithm comes up with the best combination of tasks after an 

exhaustive search of all task combinations (within the feasibility check window). The algorithm 

is as follows : 
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Output: Feasible Schedule (maximizing the PI) or failure. 

l. Tasks (in the task queue) are ordered in non-decreasing order of deadline. 

2. Start with an empty partial schedule. 

3. Check if the set of tasks (set A, IAl=K), constituting the feasibility check window is strongly 
feasible. 

4. If ( strongly feasible) 
Repeat 

• Combination Selection Algorithm: 'v'TiEA, find j (=ri) for each task such that: 

PI= L~~,j=l Plij is maximized. 
• Repeat 

Order Selection Algorithm: 
'v'TiEA, compute a heuristic value H(.) for the selected redundancy level Ti 

- sort the tasks based on their H(.). 
- The sorted order represents the dispatching order of the task set. 

Until (Termination Condition 1) 

Until (Termination Condition 2) 

5. if ( a feasible combination is obtained) 

• 'v'TiEA, extend the schedule by Ti with ri versions 
• Move the feasibility check window A, to next K tasks. 

else 

• Backtrack to the previous partial schedule. 
• Extend the schedule with the next best combination. 

Termination Condition 1: Feasible order is obtained or the maximum number of orders have been 
searched. 
Termination Condition 2: Feasible combination is obtained or the maximum number of combinations 
have been searched. 

Figure 3.2 Reliability-Aware Value-Based Scheduling Algorithm 
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1. Let the number of the tasks in the feasibility check window be K and the maximum 

redundancy level to be considered be r . 

2. Calculate the performance index for all combinations of task sets, such as n1 version 

of T1 , n 2 version of T2 , ... , nK versions of TK , where O :s; n i :s; r and 1 :s; i :s; k and 

I:f=l ni = L , where L is the maximum schedule extension size. 

3. Select the combination of ( i , j) for each task Ti and its redundancy level j that offers the 

best overall performance index PI, where: 

PI= I:~~,j=l Piij 

Though the algorithm is always guaranteed to come up with an optimal combination for the 

set of K tasks at any given time, its time complexity is O(rK) , which makes it very expensive. 

3.3.1.2 Reduced Search Algorithm 

This algorithm tries to reduce the search space by reducing the number of redundancy 

levels to be searched for each task, so that the number of combinations searched is less than 

that done by the Exhaustive Search Algorithm. This algorithm reduces the search space by 

taking smart decisions on the maximum redundancy level to be searched for each task. The 

algorithm finds the maximum redundancy level for each task, by finding the right redundancy 

level beyond which the gain in performance index for increasing redundancy is not high, which 

is determined by (an input parameter to the system). The reduced search algorithm is as 

follows : 

1. Let the number of the tasks in the feasibility check window be K and the maximum 

redundancy level to be considered be r. 

2. For each task Ti , fix the maximum level of redundancy level to be searched as j(=ri) , 

such that P Ii(j+l) - P I ij :s; ¼ * ~/100, where is a fixed value (such as 1). 
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3. Calculate the performance index for all combinations (r1 * r2 * . . . * TK) of task sets, such 

as n 1 version of T 1, n2 version of T2 , .. . , nK versions of TK (where 0 :S ni :S T i and 1 

:Si:Sk) 

To illustrate the working of this algorithm lets consider the following example. Consider 

a task Ti for = 0.02 , with following characteristics: < Vi, Pi , qi >=< 10, 100, 5 > and 

with the reliability of the processor p = 0.9 . For this task set, the PI values for different 

redundancy levels are: P Ii1 = -l, P Ii2 = 8.9, P Ii3 = 9.98, P Ii4 = 9.998. Since for this task, 

P Ji4 - P Ji3 = 0.018 :S (Vi*~ = 10 * 0.02), the algorithm eliminates all combinations of task Ti 

with redundancy level more than 3 in its search. The intuition behind pruning search in this 

manner is that the reward for searching for more than a redundancy level of 3 for the given 

is not high ( as determined by the factor). Though, the reduced search algorithm need not 

always come up with a best possible PI for every task set, it incurs a less computation cost 

for every combination selection process for a task set. The amount of search executed and 

how close the solution is to the best combination offering the best PI, is controlled by the 

parameter. With increased value of~, the number of redundancy levels searched for each task 

is also increased, thereby increasing the search space and improving the overall PI. 

3.3.2 Order Selection Algorithm 

The objective of the order selection algorithm is to order the task execution sequence, for 

a given combination of a task set , such that the selected combination of task set is feasible to 

schedule. The order selection algorithm is an important component in the proposed scheduler 

as the feasibility of scheduling a selected combination depends on the effective dispatching 

of the tasks. This is because in a dynamic scheduling environment the task dispatch order 

is not a trivial decision as it involves many factors such as the earliest available processor 

time, task ready time and earliest resource availability time. So the task dispatching order 

must take into account these constraints to increase the chances of meeting tasks deadlines. A 

mere dispatching of task with highest PI with their redundancy level is not desirable, as this 

can introduce "holes" ( idle processor time) in the schedule, leading to missing of deadlines of 
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many other tasks. In this section, we propose two order selection schemes, Deadline Ordering 

and Heuristic Ordering, which orders the selected task set combination based on deadline and 

heuristic functions respectively. 

3.3.2.1 Deadline Ordering Scheme 

The deadline ordering scheme determines the order of task execution, based on how close 

the tasks are to their deadline, for all the tasks in a given task combination. So, tasks having 

smaller deadlines will be scheduled first. The disadvantage of this scheme is that it does not 

take into account the Earliest Start Time (EST) of a task, which can introduce a lot of holes, 

thus resulting in poor schedulability. 

3.3.2.2 Heuristic Ordering Scheme 

The heuristic ordering scheme overcomes the disadvantage of the deadline ordering scheme 

by taking into account the EST of a task for finding the appropriate task dispatch order. This 

scheme uses a heuristic function which captures the importance of deadline and also EST of 

a task, which is given by: 

H(Ti) =di+ W * EST(Ti) 

The W factor determines the weight given to the EST of a task. So, lower the value, means 

lesser the importance given to the EST. So, the tasks are ordered based on their heuristic 

value H (.) and dispatched in the sorted order. As explained in the FT-Myopic algorithm, if a 

selected order for a task set is not feasible , then a different order can be obtained by varying 

the W parameter. A special case of this scheme for W = 0 is the deadline ordering scheme. 

3.3.3 Illustration for the proposed value-based scheduler 

Consider a real-time system with four processors. Assume that five tasks {T1, T2 , T3 , T4 , T5 } 

are to be scheduled with all tasks having the same computation time and deadline but different 

reward values, as given in Table 1. Assume the reliability of the processor to be 0.9, K = 3, 

L=4 and r=3. 
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Table 3.1 Example Task Set 

task Ti Ci di ½ pi Qi 

T1 0 5 10 10 100 1 
T2 2 5 10 20 150 2 
T3 0 5 10 10 80 0.8 
T4 3 5 20 30 200 3 
Ts 0 5 20 8 50 0.5 

Then the algorithm behaves as follows: First the combination selection selects algorithm 

selects T2 and T3 out of the first 3 tasks (T1 , T2 , T3) . Then the ordering algorithm (Heuristic 

Ordering) comes up with schedule of T21 on P1 , T22 on P2, T31 on P3 , T32 on P4. Then, in the 

next schedule, out of 3 tasks (T1 , T4 and Ts), T1 and T4 are selected with a redundancy level of 

2 each. The order of dispatch is of T1 first (if EST or Deadline ordering scheme is used) and T4 

next and then Ts is scheduled with redundancy level of 4, as no other task can be scheduled. 

3.4 Performance Evaluation 

In this section, we first discuss the method adopted for task generation and simulation and 

then present the simulation results. 

3.4.1 Task Set Generation for Value-based Scheduling 

The objective of the proposed scheduling algorithm in this paper is to obtain a feasible 

schedule for a set of tasks, if such a schedule exists, such that the overall value (performance 

index) of the system is maximized. Heuristic algorithms cannot be guaranteed to achieve this 

everytime but one heuristic algorithm can be considered better than another, if it obtains 

a better value and a feasible schedule, given a schedulable task set . This is the basis of 

our simulation study. Hence, in our simulation study we generate a tightly schedulable task 

set for m processor system, with appropriate redundancy level determined during the task 

generation phase, based on its value. Thus, the task generator generates tasks to guarantee 

almost maximum utilization of the processors and also determines the redundancy level of each 
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Table 3.2 Simulation Parameters 

Task Parameter Value Range 
Ci 10 · · · 40 
V: i 50 · · · 200 
pi (2 · · · 4) *Vi 
Qi ½/10 

processor based on its value. So, higher the value of a task, higher its redundancy level. The 

inputs to the task generator are given in Table 2. 

The schedule generated by the task is in the form of a matrix M which has S (given by 

schedule length) columns and r rows. Each row represents a processor and column represents 

the time unit. The task generator starts with an empty matrix, then the value parameters 

and computation time of a task are chosen randomly using a uniform distribution between 

the values shown in Table 2. Then, it determines the redundancy level for each task based on 

its value, such that it is proportional to the value of the system and fills up the appropriate 

columns and rows of the matrix. Thus, the task generator generates task until the utilization 

left is less than the minimum computation time of a task. Here, the task's deadlines are chosen 

to be their finish time of the generated task, which gives very little leeway for the scheduler. 

We believe that the task set generated by this task generator can evaluate various heuristics 

in a rigorous manner. 

3.4.2 Simulation Method 

In our simulation, N schedulable task sets are generated and the values obtained for the 

schedule during task generation is recorded. Performance of the the proposed algorithms, 

ES-D (Exhaustive Search and Deadline Ordering), ES-EST (Exhaustive Search and Earliest 

Start Time Ordering) , RS-D (Reduced Search and Deadline Ordering) and RS-EST (Reduced 

Search and Earliest Start Time ordering) was evaluated based on the following metric: 

• ValueRatio : It is defined as the ratio of the value obtained by the scheduler to the 

value obtained during task generation. It must be noted this value can vary from O to 
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1 ( and also above 1 some cases, because the value of the schedule obtained during task 

generation need not be optimal) . 

. Valuesched 
ValueRatio = ------

Val ue9enerator 
(3.2) 

where, Valuesched = Value obtained by the proposed scheduler, Value9enerator = Value 

obtained during task generation, this is used as the baseline value for comparison. 

Thus, all the four algorithms are evaluated for varying values of maximum schedule exten-

sion size (say L ), i.e., the maximum number of tasks with which a schedule is extended for 

every scheduling decision, the feasibility check size window (K), .6. (for the Reduced Search 

Algorithm). The simulation was run for 10 sessions of feasible task sets, each consisting of 50 

tasks and each simulation was run 5 times and the averages are plotted. 

3.4.3 Effect of Schedule Extension Size (L) 

In this experiment, the efficiency of all the schedulers were tested for varying values of 

Schedule Extension Size, L. Recall that one of the motivations for our work is to extend the 

task schedule by more than one task at a time in order to improve the overall PI. The results 

of the experiment conducted for a 4-processor system and 5-processor system, with K = 4 is 

given in Figures 3.3 and 3.4. 

As it can be seen from the figures , increase in L gives a better performance with respect 

to the value ratio for both 4-processor and 5-processor systems. This is due to the fact that 

the scheduler can make a more effective scheduling decision, when it is allowed to extend 

its schedule with more tasks (as the number of redundancy levels that can be searched for 

each task will also be high, thereby leading a higher value). However, it must be noted 

that higher values of L requires more computation for making a scheduling decision as the 

scheduler's search space increases. Comparing the performance of the four algorithms it can 

be seen that the Exhaustive Search algorithms performing better than the reduced search 

counterparts. However, the decrease in value ratio due to the reduced search is not that high, 

hence there is a good reward for going for reduced search as it obtain schedules that also have 
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comparable value ratio. It must be noted that in this simulation, the resource constraints 

have not been simulated, which would establish the superiority of EST ordering schemes over 

Deadline ordering schemes. However, still it can be observed that in the current simulation 

setup, the EST ordering algorithms do better than deadline ordering schemes as the amount 

of holes (idle processor time) created in the schedule is decreased. 

3.4.4 Effect of Feasibility Check Window Size (K) 

In this experiment, the efficiency of the ES+EST scheduler was tested for different values 

of Kand for different values of L. The results of the experiment conducted for 4-processor and 

5-processor system are given in Figure 3.5 and Figure 3.6. The effect of K was studied only for 

ES+EST scheduler as it is the one that gives best performance among all the schedulers and can 

measure the effect of Kon ValueRatio effectively. The K is studied for varying L parameters 

as both of these parameters affect the scheduling performance together , as explained below. 

As it can be seen from the figures, the increase in K increases the value ratio of the 

schedulers. This is due to the fact that the K represents the look-ahead nature of the scheduler 

and higher its value, the more effective is its scheduling decision, leading to higher value of 

the system. However, the performance gain obtained by increasing K from 4 to 5 is not really 

huge, hence a more complex search is not that rewarding for a small performance increase in 
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this setup. Further, it can be seen from the figures that as for a given K (say 2 in the figures) , 

the ValueRatio obtained decreases with increase in L beyond a value. For example, in the 

figures it can be seen that for K of 2, the ValueRatio obtained decreases beyond L=5. This 

is due to the fact that extending a task schedule with smaller number of tasks ( determined 

by K) , each having more versions (determined by L) yield less value. Thus, it is necessary 

that L parameter should be high if the K is also high to get a better performance. It must 

be noted that this problem of scheduling more versions of tasks due to small sized feasibility 

check window is eliminated by the reduced search algorithms as they determine the maximum 

redundancy level of a task and does not extend the schedule more than the determined levels, 

irrespective of the value of L. 

3.4.5 Effect of 

In this experiment , the efficiency of the RS+EST scheduler was tested for different values 

of~ for 4 and 5 processor systems. The results of the experiments are shown in Figure 3.7 

and 3.8 for L=7. 

As it can be seen from the figure that with decreasing values of .6. , the ValueRatio ob-

tained increases for both the systems. This is due to the fact that the search space increases 

with increase in ~ , thereby leading to a better performance. However, the performance gain 
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obtained from .6. = 3 to .6. = 1 is not high. Hence, it can be clearly seen that unnecessary 

searching is reduced by the algorithm. 



www.manaraa.com

31 

CHAPTER 4. Adaptive Value-Based Scheduling Algorithms for 

Homogeneous and Heterogeneous Computing Systems 

4.1 Introduction 

In this chapter, we propose adaptive value-based scheduling algorithms for homogeneous 

and heterogeneous computing systems that can maintain high system value with minimal dead-

line misses for all ranges of workloads. First, we propose an adaptive value-based scheduling 

scheme for homogeneous computing systems and extend the proposed adaptive value-based 

scheduling scheme to HC systems to take into account the heterogeneity in computing. Then, 

we evaluate the performance of proposed scheduling schemes using extensive simulation studies 

and compare their performance with traditional deadline scheduling schemes [2). The rest of 

the chapter is organized as follows: Section 4.2 present the system and task model, section 

4.3 presents our proposed adaptive value-based scheduling algorithms and their performance 

evaluation results are presented in section 4.4. 

4.2 System Model 

• The system consists of m processors, with non-homogeneous computing capabilities for 

a HC system. The reliability of processors are assumed to be equal. The system model 

is the same scheduler-dispatcher model used in the previous chapter. 

• The total system utilization, U is given by U = I:~1 Ui/m, where Ui gives the utilization 

of processor Pi. 

• The tasks are assumed to be aperiodic and have no resource or precedence constraints. 
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• Each task Ti entering the system is characterized by< ai, Ci , di , Vi >, where ai represents 

the arrival time of the task, di represents the deadline and Vi represents the value offered 

by the task to the system. Ci is the computation time vector of Ti that contains the 

computation times of the task for m processors ( Ci = < Ci1, Ci2, ... , Cim >). For example, 

Cij denotes the computation time of task Ti on processor Pj. In case of homogeneous 

system, the task is just characterized by Ci, as the task will take the same time for 

computation in each processor. 

• A task Ti is said to be feasible to schedule in a processor Pj, if ESnj + Cij :S di, where 

ESTij is the earliest start time of Ti on Pj = max {Pj's available time, ai}. 

• The Minimum Completion Time (MCT) of a task Ti on a processor Pj, MCTij, is defined 

as the earliest time by which Ti will complete its execution on Pj. 

4.3 Proposed Value-based Schedulers 

In this section, we present adaptive value-based schedulers for both homogeneous and 

heterogeneous computing systems. The optimal scheduling of real-time tasks, maximizing the 

overall value of the system subject to meeting of their deadlines in a multiprocessor system is 

NP-complete [10]. In this section, we propose a branch and bound search algorithm, similar to 

myopic scheduling algorithm, but which can adapt its scheduling behavior based on the system 

load conditions. 

The adaptive nature of scheduling is introduced in the branch function, which is used to 

extend the schedule (search tree). The principle idea of this scheduling is to monitor the 

performance of the system periodically, for each scheduling of a set of tasks (we call this as a 

scheduling epoch), in terms of (i) the value of tasks that were rejected as compared to the value 

of tasks that were accepted and (ii) total processor utilization. Thus, the system monitors and 

computes the Value-Indicator parameter, v , for every scheduling epoch as follows: 

maximum value of task among all the tasks rejected v=----------------------minimum value of task among all the tasks accepted ( 4.1) 
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Then, we define a value weight function F( s) for every scheduling epoch s as follows: 

F(s) = 
I , v 2: 1 

v , v ::; 1 and U ::; 1 

F(s - 1) , otherwise 

(4.2) 

The above defined value weight function , F ( s) , is calculated for every scheduling epoch 

and determines the weight that must be given to the value-based scheduling, while 1 - F( s) 

determines the weight that must be given to 4eadline scheduling. Hence, this function is used 

as the branch function in the scheduler and is applied to tasks under consideration and the 

branch corresponding to the minimum value of the H function is selected for scheduling. The 

function is applied for a task 7'-i as follows: 

H (Ti) = di * ( 1 - F ( s)) + ( K /Vi) * F ( s) (4.3) 

where K is a constant that normalizes value to the same scale of deadline time. 

The above branch function is dynamic in nature, wherein the first part of the equation 

represents the deadline scheduling behavior, while the second part determines the value-based 

scheduling behavior of the scheduler. Thus, change in the F(s) value leads to a change in the 

scheduling behavior with a value of 1 meaning that the tasks are scheduled just based on value, 

while a value of O meaning that the tasks are scheduled just based on deadline. Since, the value 

of F( s) changes according to the load, the scheduling behavior also changes accordingly from 

deadline scheduling to value-based scheduling or vice versa. 

4.3.1 Adaptive Value-based Scheduler for Homogeneous Systems 

In this subsection, we present an adaptive scheduler for homogeneous systems, which is 

basically a branch and bound search algorithm using the aforesaid branch function. The 

objective of proposed scheduler is to search for a feasible task schedule for a given set of tasks, 

such that overall value of system is maximized with minimal missing of deadlines. The system 

consists of a task arrival queue, containing tasks that are ready to run and ordered based on 
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Output : Feasible schedule (maximizing the value) . 

1. Tasks in the task queue are ordered in non-decreasing order of deadline. 

2. Start with an empty schedule (as initial state of search tree). 

3. Check if the initial K tasks in the feasibility check region R is feasible. 

4. If feasible 

(a) Compute the branch function H(.) (as in equation 3) for all tasks in R. 
H(Ti) =di* (1 - F(s)) + (K/vi) * F(s) 

(b) Extend the task schedule with lowest branch function value on next available processor. 

else 

(a) Backtrack to the previous schedule (node), if number of backtracks are less than the maxi-
mum limit. 

(b) Extend the schedule with next best task. 

5. Repeat steps 3-5 until the task queue is empty or all the tasks are either accepted or rejected. 

Figure 4.1 Adaptive Value-based Scheduling for homogeneous systems 

their deadline. The scheduler examines the first K tasks in queue ( which we call feasibility 

check region, R) and examines to see if the tasks in R are feasible. If feasible, then the 

scheduler applies the above branch function for each task to find the best task to extend the 

schedule (search tree). i.e., the task with minimum branch function value is selected and the 

scheduler repeats the same process of task selection until the task queue is empty. If feasibility 

check fails, then the scheduler backtracks and extends the schedule with next best task. If the 

number of backtrack exceeds the maximum backtrack limit then the scheduler drops the task 

with least value and begins the search again. 

The adaptive scheduler for homogeneous multiprocessor system is presented in Figure 4.3.1. 

The scheduler is of complexity O(n) , as the deadline ordering of tasks in step 1 will be linear 

( as tasks can be inserted into the task queue itself based on deadline in linear time), feasibility 

checking of tasks in step 3 is of O(K) and task selection in step 4 is also of complexity O(K). 
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4.3.2 Adaptive Value-based Scheduler for HC systems 

The scheduler presented in Figure 4.1 can adapt to different workloads dynamically but is 

suited only for homogeneous multiprocessor system. A direct application of the scheduler in 

an heterogeneous multiprocessor or multi computer environment is bound to perform poorly, 

as the task selected for scheduling need not always run best on the next available processor. 

For example, a task selected for scheduling, if scheduled on the next available processor might 

miss its deadline or can lead to poor schedulability ( as scheduling this task on a processor 

with a large MCT might force the future tasks to miss their deadline, thus affecting the overall 

schedulability of the system). 

Thus, real-time scheduling for heterogeneous computing systems involves two important 

steps: (1) task selection - selecting a task that needs to be run first and (2) processor selection 

- selecting a processor in which the selected task needs to be run. Thus, the scheduler not only 

determines the task to run next but also the best processor for that task to run, such that 

the task meets its deadline. Hence, the branch function used in the scheduler for HC systems 

needs to be modified to account for the heterogeneity in computing and also to carry out both 

task and processor selection. For this scheduling problem, we propose two different schedulers, 

which primarily differ by their nature of task and processor selection. The first scheduler for 

HC system, Basic scheduler, employs separate functions for task and processor selection. The 

second proposed scheduler for HC system, Integrated Scheduler, also employs a branch and 

bound search algorithm and uses a branch function that integrates both task selection and 

processor selection. 

4.3.2.1 Basic Adaptive Value-based Scheduler for HC systems 

In this subsection, we propose a basic adaptive scheduler for HC systems, wherein the task 

selection and processor selection are done in two different steps using separate functions. The 

task selection is done using the following branch function: 

(4.4) 
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A task Ti with minimum function value will be selected for extending the schedule. Then, 

the scheduler selects the best processor for the selected task Ti (processor selection) by finding 

the processor Pj that offers the least M CTij. Thus, the scheduler works by extending the task 

with best task and finding the best available processor for the selected task. The algorithm 

for this scheduler is given in Figure 4.2. The complexity of this algorithm is 0( nm) as the 

feasibility checking of R in step 3 is of O(Km) , even though the task and processor selection 

is of O(K + m). 

Basic Adaptive Value-based RC-Scheduler() 
Input: Task set to be scheduled. 
Output: Feasible schedule (maximizing the value) . 

1. Tasks in the task queue are ordered in non-decreasing order of deadline. 

2. Start with an empty schedule (as initial state of search tree). 

3. Check if the initial K tasks in the feasibility check region R is feasible, at least in a single 
processor/machine. 

4. If feasible 

(a) Task Selection : Compute the branch function H(.) (as in equation 5) for all tasks in R. 
H(Ti) =di * (1 - F(s)) + (K/vi) * F(s) 

(b) Select the task with the lowest branch function and call it Ti. 
(c) Processor Selection : Find the processor Pj that has the least minimum completion 

time value for Ti. i.e. , let MCTij = mink=l MCTik· 
(d) Extend the task scheduler with task Ti on processor Pj . 

else 

(a) Backtrack to the previous schedule (node), if number of backtracks are less than the maxi-
mum limit. 

(b) Extend the schedule with next best task. 

5. Repeat steps 3-5 until the task queue is empty or all the tasks are either accepted or rejected. 

Figure 4.2 Basic Adaptive Value-based Scheduling for HC systems 

4.3.2.2 Integrated Adaptive Value-based Scheduler for HC systems 

In this subsection, we propose an integrated scheduler that uses an integrated branch 

function for selecting both tasks and processors at the same time, unlike the previous scheduler 

which uses two separate functions for the same. The branch function used for the proposed 
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scheduler that will be computed for a task Ti on a processor Pj is as follows: 

(4.5) 

Thus, the scheduler extends the task schedule with the task Ti on processor Pj that has 

the lowest branch function value in the feasibility check region. The integrated adaptive value-

based scheduler for HC system is presented in Figure 4.3. The proposed integrated heuristic 

will select a task that can run on a processor that will meet its deadline at the latest, thus 

the tasks are not always scheduled in the fastest running processor but the processor that is 

just good enough to meet the deadline of a task. Since, the task and processor selection has 

a complexity of O(Km) (like feasibility checking in step 3), the complexity of the proposed 

scheduler is also of O(nm), but this scheduler incurs an additional run-time complexity as the 

process of task and processor selection is more complex (O(Km)) than the basic scheduler 

(O(K + m)). 

Integrated Adaptive Value-based HC Scheduler() 
Input: Task set to be scheduled. 
Output: Feasible schedule (maximizing the value). 

1. Tasks in the task queue are ordered in non-decreasing order of deadline. 

2. Start with an empty schedule (as initial state of search tree). 

3. Check if the initial K tasks in the feasibility check region R is feasible, atleast in a single proces-
sor /machine. 

4. If feasible 

(a) Compute the branch function H(.) (as in equation 4) for all tasks in R for all processors. 
Compute the following function for each task Ti for each processor Pj: 

H(TiJ) = (di - MCTiJ) * (1 - F(s)) + (K/vi) * F(s) 
(b) Find the task-processor combination yielding the lowest heuristic value (H(Tij) and extend 

the task schedule ( search tree) with task Ti on processor Pj . 

else 

(a) Backtrack to the previous schedule (node), if number of backtracks are less than the maxi-
mum limit. 

(b) Extend the schedule with next best task. 

5. Repeat steps 3-5 until the task queue is empty or all the tasks are either accepted or rejected. 

Figure 4.3 Integrated Adaptive Value-based Scheduling for HC 
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4.4 Performance Studies 

In this section, we evaluate the performance of the proposed adaptive schedulers in homo-

geneous and heterogeneous multiprocessor systems for various range of workloads, i.e. , from 

underloads to overloads. 

4.4.1 Performance in Homogeneous Computing Systems 

In this section, we compare and evaluate the performance of the proposed adaptive value-

based scheduler against the traditional deadline scheduler, which schedules the task always 

based on its deadline. The goal of our simulation study is just to compare the algorithms 

under different workloads, rather than to provide absolute quantification of their performance 

under realistic workloads. We have adopted this strategy because of two reasons: (i) there is no 

well known (publicly available) real-time workload for homogeneous and heterogeneous systems 

and (ii) experimenting under a single realistic workload has a limited scope on the performance 

evaluation. Hence, the two schedulers are evaluated using the following experimental setup: 

• Each simulation run generates 10000 tasks. 

• The task inter-arrival time follows an exponential distribution with mean 0. 

• A task Ti's execution time (Ci) is uniformly chosen at random between [10,50). 

• The deadline of a task is assigned to be DFACTOR * Ci, where DFACTOR is chosen 

at random from uniform distribution - [ 1, 4). 

• The value of a task is chosen at random uniformly between [50,1000). 

• The load of the system is characterized by L = C /0, where C is the average execution 

time of a task and 0 is the arrival rate of tasks in the system. 

• The size of the feasibility check region (K) was chosen to 6, as the schedulers yielded 

better performance for this value of K. (Further, the scope of performance study is 

not to evaluate the performance of the algorithm with respect to K but to evaluate the 

behavior of the algorithms under various workloads.) 
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• The value of F(s) was recomputed after successful scheduling of 50 tasks, comprising a 

scheduling epoch. 

In the above experimental setup, the two schedulers are evaluated on the following metrics: 

• Success Ratio (SR): This is defined as the ratio of the number of tasks that were 

scheduled to the total number of tasks that arrived in the system. 

SR= No. of tasks scheduled 
Total No. of tasks arrived 

(4.6) 

• Value Ratio (VR): This is defined as the ratio of the value obtained by the scheduler 

(i.e., the sum of value of scheduled tasks) to the the total value of all the tasks. 

V R = Sum of value of scheduled tasks 
Total value of tasks arrived (4.7) 

In the experiment setup described as above, the two schedulers, the adaptive value-based 

scheduler and the deadline-based scheduler were evaluated for 2 and 4 (homogeneous) processor 

systems for loads from 0.5 to 3. The results of the experiments evaluated based on SR and 

VR is given in Figures 4.4 and 4.5. As it can be seen from the figures , the proposed adaptive 

value-based scheduler performs well in terms of value-ratio during overloads and maintains a 

high value-ratio than its deadline-based counterpart, which in spite of having a better SR has 

a poor VR. It is to be noted that during overloads the scheduler must maintain a high VR as 

scheduling tasks with higher value allows the system to degrade gracefully. Thus, the proposed 

adaptive scheduler performs better during overloads allowing the system to gracefully degrade 

by maintaining high system value. Further, the performance of the two schedulers during 

underloads and near full loads are also comparable with respect to SR and both maintain a 

comparable VR. This validates our claim that the proposed adaptive scheduler performs well 

not only during overloads by maintaining a high system value but also minimizes deadline 

misses and maintains a high SR during underloads. This is due to the fact that the proposed 

adaptive scheduler, adapts to the workload and switches to deadline-based scheduling during 
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underloads thereby maintaining a high scheduling success ratio and does value-based scheduling 

during overloads yielding an high system value. 
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Figure 4.5 Performance of the schedulers in a 4-processor system 

4.4.2 Performance in Heterogeneous Computing Systems 

In this subsection, we study the performance of the proposed two adaptive schedulers for 

heterogeneous computing systems, which are variants of the scheduler evaluated in the previous 

subsection. The simulation of heterogeneous computing environment is not a straightforward 

process and involves simulation of heterogeneity in task and machines. 

Task Generation: In this experiment , the task generation was done in a different manner 

wherein the task generation was done by computing an ETC (Expected Time to Compute) ma-
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trix, which consists of the computation times of tasks for all tasks on different processors. In an 

ETC matrix, the numbers along the row indicate the execution times of the corresponding task 

on different machines. The average variation along the rows is defined by task heterogeneity. 

Similarly, the average variation along the columns is defined by machine heterogeneity. One 

classification of heterogeneity is to divide into high and low heterogeneity. Based on the above· 

idea, four categories of ETC matrix are possible: (1) high task heterogeneity and high machine 

heterogeneity (HiHi) , (2) high task heterogeneity and low machine heterogeneity (HiLow) , (3) 

low task heterogeneity and high machine heterogeneity (Low Hi) and ( 4) low task heterogeneity 

and low machine heterogeneity (LowLow) . Thus for the simulation random ETC matrices (for 

Trows and M columns are simulated in the following manner: 

l. Let b..r be an arbitrary constant defining task heterogeneity, smaller denoting low task 

heterogeneity. Let Nt be a number picked from the uniform random distribution (1 ,b..r ). 

2. Let D..m be an arbitrary constant defining machine heterogeneity, smaller denoting low 

machine heterogeneity. Let Nm be a number picked from the uniform random distribution 

(1,b..m)-

3. Sample Nt T times to get a vector q [ 0 .. . [T-1] ]. 

4. Generate the ETC matrix, e[(0 ... T-1) ,(0 .. M-1)] as follows: 

(a) for Ti from 0 to T - l 

(b) for mj from Oto M - 1 

(c) pick a new value for Nm 

( d) e[i, j] = q[i] * Nm 

(e) endfor 

(f) endfor 

Experiment Setup: In the experiments described here, the values for b..r for low and high 

task heterogeneities are 100 and 300, while the values for D..m for low and high machine hetero-

geneities are chosen to be 10 and 100. These values are selected based on the heterogeneous 
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environment described in [20]. Further, the experiments were studied for HiHi and LowHi het-

erogeneous environments as only these environments capture the heterogeneity in computing 

power. Thus, the values generated in the ETC matrix are used as computation times of the 

tasks to be scheduled by the schedulers and were tested in the following simulation setup: 

• Each simulation run generates 10000 tasks and were run for a 10 processor system. 

• The task inter-arrival time follows an exponential distribution with mean 0. 

• A task Ti 's execution time vector ( Ci) is obtained by generating a random ETC matrix 

using the algorithm described above. 

• The deadline of a task is assigned to be DFACTOR* max(Ci1, ... , Cim) , where DFACTOR 

is chosen to be 1 to 2 with equal probability. 

• The value of a task is chosen at random uniformly between [50,1000]. 

• The load of the system is characterized by L = C / 0, where C is the average execution 

time of a task and 0 is the arrival rate of tasks in the system. 

• The size of the feasibility check region (K) was chosen to 6. 

Simulation Results: The proposed two schedulers ' performance are evaluated in the 

above simulation setup for various loads (L) for both HiHi and Low Hi heterogeneous environ-

ments and the results are presented in Figures 4.6 and 4.7. It can be seen from Figure 4.6 

that in a HiHi heterogeneous environment under high loads the basic scheduler performs better 

in terms of scheduling success ratio (SR) than integrated scheduler (for L=5 to 1.5). This is 

because the basic scheduler selects the more urgent task using a separate heuristic and then 

schedules it in a best processor whereas the integrated scheduler schedules the task only in 

processors that can finish as close to their deadline as possible. Further, it must be noted here 

that the load L is not an exact depiction of load ( as even load L = 2 has a good scheduling 

success ratio), as the deadline selected for each task is twice the maximum of its computation 

times in all machines. Further, since the environment is highly heterogeneous the computation 
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times can differ by a multiple of 100 times. Hence, even load values greater than 1 yields 

high success ratio. In such a study, it can be seen that the basic scheduler performs better 

under heavy loads in terms of SR and VR, whereas under lighter loads (0.5 to 1) , integrated 

scheduler performs a little better than its basic counterpart. This is due to the fact that the 

integrated scheduler tries to schedule tasks that can just meet its deadline thereby under near 

full loads, it finds the exact fit for each task, thereby increasing the schedulability whereas the 

basic scheduler always schedules in the fastest processor. 
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Figure 4.6 Performance in a HiHi heterogeneous computing system 
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Figure 4.7 Performance in a LowHi heterogeneous computing system 

The performance of the schedulers in a Low Hi heterogeneous environment is given in Figure 

4.7. The relative performance of the two schedulers is the same as in HiHi environment, with 

the basic scheduler performing better than the integrated scheduler in terms of SR and VR 
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during heavy loads while the latter performs marginally better than the former during light 

loads. However, it must be noted that the performance of the integrated scheduler is better 

in a Low Hi environment than in a HiHi environment as the heterogeneity in task computation 

times are less compared to HiHi environment and hence deadlines are more comparable to the 

least computation time of a task, whereas in a HiHi environment the laxity tends to be always 

high due to the high deadline estimates used in the simulation. 

Thus, among the two proposed heterogeneous schedulers it can be concluded that the basic 

scheduler is better than the integrated scheduler as it performs better in terms of success ratio 

and also value ratio, and further has a marginally less run-time complexity. 
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CHAPTER 5. Implementation of Adaptive Value-based Scheduler in 

RT-Linux 

5.1 Introduction 

In this chapter, we present the design and implementation of the proposed adaptive value-

based scheduler (for homogeneous computing system) in RT-Linux, a real-time variant of 

Linux operating systems and present the results of experimental evaluation of the implemented 

scheduler for various ranges of workloads. A shorter version of this work can be found in 

[32]. The rest of the chapter is organized as follows: In section 5.2, we present the basic 

architecture of RT-Linux and discuss its current scheduling behavior. In section 5.3, we discuss 

the implementation of proposed adaptive value-based scheduler and Highest Value-Density 

First (HVDF) scheduler in RT-Linux and present the results of experimental evaluations in 

RT-Linux in section 5.4. 

5.2 RT-Linux 

RT-Linux is a real-time variant of Linux, which adopts the approach of making Linux run 

as a low-priority task of a real-time executive. RT-Linux decouples the mechanisms of the real-

time kernel from the mechanisms of the general-purpose kernel so that each can be optimized 

independently and so that the real-time kernel can be kept small and simple. One of the key 

features of the RT-Linux is that the real-time kernel never has to wait for the Linux side to 

release any resources. RT-Linux does not request memory, share spin locks, or synchronize 

any data structure. However, it can interact with non-real-time system using shared memory 

and device interface. Another key-feature of RT-Linux is that the non-real-time kernel takes 
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0 0 8 8 
Figure 5.1 RT-Linux Architecture 

care of system and device initialization, as there can be no hard real-time constraints while 

booting. The job of the real-time kernel is to provide the direct access to the raw hardware 

for real-time tasks so that they can have minimum latency and maximum processing capacity 

is available to them. The architecture of RT-Linux is given in Figure 5.1. 

RT-Linux is module-oriented and relies on the Linux loadable kernel mechanism to install 

components of the real-time system and to keep the RT-system modular and extensible. The 

key modules of the system are the scheduler and the one that implements RT-FIFOs. The 

use of modules ensures the ease of changing policies for scheduling RT tasks, if the deadline 

requirements are not met . Currently, RT-Linux supports only periodic tasks and has two 

in-built schedulers - RMS and EDF implemented in it. 

5.2.1 Task Creation and Scheduling in RT-Linux 

Real-time tasks are created in RT-Linux using real-time thread library pthreads. The 

pthread's (task's) attributes are stored in a task structure, rtUhread_struct. The important 

variables of the real-time task structure (rtLthread...struct) are given as follows: 

• period - Task Period variable - set during invocation by the task module 

• priority - Task Priority variable - set during invocation 
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• current_deadline - Task Deadline variable - set at run-time after every period 

• resume_time - Task Resumption Time variable - set by scheduler at run-time usually as 

multiples of task period 

The kernel maintains a list of tasks that are ready to execute in the system in a global linked 

list , task_list and APis such as pthread_create(}, pthread_delete() and pthread_seLschedparams() 

are used for task creation, deletion and setting up of task parameters respectively. Thus, a 

real-time developer needs to use the above APis to write a program that creates periodic 

real-time thread with desired timing characteristics. 

Scheduler in RT-Linux follows a run-time system model and constructs schedule at run-time 

without performing a schedulability check. The scheduler can be invoked due to various rea-

sons: such as creation of a new task, completion of current running task etc. Upon invocation, 

the scheduler ( rtLschedule(}) selects the best task in the list among the tasks that are ready 

( task with resume_time > current_time), based on priority/ period/ deadline and switches the 

execution to the selected task. The priority-based scheduler selects task with highest priority, 

while RMS and EDF schedulers schedule tasks with lowest period and deadline respectively. 

In case of overload, the deadlines of few tasks will be missed and it can be observed when: 

resume_time < current_system_time - period 

Hence the resume_time is increased by multiples of period until the above condition is invalid 

(i.e. , resume_time > current...system_time - period). The number of times period is added 

to resume_time indicates the number of instances of the task missing the deadline. The 

complexity of the existing scheduler in RT-Linux is O(n), as the scheduler does a linear search 

on the task list to select the best task. 

5.3 Implementation of Value-based Schedulers 

RT-Linux from the original open sources does not employ a notion of value of a task. 

Hence for the implementation of value-based scheduling schemes in RT-Linux, the real-time 

task structure (rtUhread_struct) was changed and a new variable, value, was added. Two 
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value-based schedulers, proposed adaptive value-based scheme and HVDF, are implemented 

in RT-Linux. Further as said earlier, RT-Linux does not perform schedulability check and 

hence the proposed scheduler is implemented without schedulability check component. The 

implementation details of these two schedulers are presented in the next subsections. 

5.3.1 Adaptive Value-based Scheduler 

For implementation of the proposed adaptive value-based scheduler (Adaptive-Imp!), the 

primary schedule function (rtLschedule()) was changed, wherein each task priority is computed 

with following heuristic function: 

(5.1) 

The task with the minimum heuristic value is selected for scheduling. Thus, the com-

plexity of the scheduler is still linear, i.e., O(n). Further, the value of tasks that met and 

missed their deadlines were profiled through newly added kernel APis (MM..met_deadline() and 

MM..miss_deadline()). These APis update the maximum value of rejected tasks, MM..mruuejval 

variable, and minimum value of accepted tasks, MM..min_acceptval variable. These vari-

ables were used in the calculation of value-ratio for every scheduling epoch determined by 

MMJnvocationJnterval variable, which is decremented after every call to rtLschedule(). Once 

it reaches zero, F S is recalculated and MM _invocation_interval is reset to original feedback 

value. Thus, recalculation of F S is done every MM _invocation_interval times. It must be 

noted that the MM _invocation_interval variable determines the sensitivity of the scheduler 

to change in workload. The value of v and F S are calculated as follows: 

MM _max_rejval 
v=--------

M M _min_acceptval (5.2) 

FS= { 
l, v 2: 1 

FS(s - 1), otherwise 
(5.3) 
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5.3.1.1 HVDF 

The implementation of this scheduler was done similar to the above scheduler, except that 

the task with highest value density ( vd ci) is selected for scheduling. 

5.3.2 Validation of Implementation 

The correctness of the implementation of the proposed adaptive value-based scheduler 

was validated by evaluating its performance for various workloads and comparing it with the 

simulated scheduler for the same set of workloads in terms of success ratio (SR) and value-

ratio (VR). The validation method adopted is as follows: Periodic task sets were generated for 

different loads and the schedulers' (both implementation and simulation) performance were 

studied. The results of such a study is presented in Figure 5.2. It can be seen from the figure 

that the implemented scheduler performs close to the simulated scheduler. The difference in 

the schedulers performance could be due to the extra workload introduced by the Linux OS 

and its daemons and overheads due to actual scheduler, context switch and interrupt handling, 

which were not accounted in the simulation. 
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5.4 Performance Evaluation 

The performance of the three schedulers were evaluated by generating random task sets for 

different loads (i.e. , task sets with different arrival rates). Further, it must be noted that RT-

Linux supports only periodic threads and in our performance evaluation we studied aperiodic 

threads by creating periodic threads and running them for a single instance and deleting them 

upon execution. Further, kernel math libraries are not available in Linux, hence random task 

sets were generated by user level programs, which were used in the kernel modules. The 

experimental setup used for performance evaluation is as follows: 

• Each simulation run generates 1000 threads. 

• The task inter-arrival time follows exponential distribution with mean 0. 

• A task Ti 's execution time ( Ci) is uniformly chosen at random between [100,5000] mil-

liseconds. 

• A task Ti 's deadline is chosen to be four times Ci. 

• The value of task is chosen at random between [1000,50000]. 

• The value of MM _invocation_interval was set to 20. 

• The load of the system is characterized by L = C /0, where C is the average execution 

time of a task and 0 is the arrival rate of tasks in the system. 

• Each evaluation was run for generation of 1000 tasks and for 20 runs. 

The performance evaluation was conducted in a Pentium-II 266 MHz machine with RT-

Linux running on it. The performance of three schedulers in terms of success ratio (SR) and 

value ratio (VR) for various workloads and the results are presented in Figure 5.3. It can 

be seen from the figures that the proposed scheduler performs better than EDF and HVDF 

in terms of VR during underloads. Further, it can be seen that during near full loads and 

full loads, the proposed adaptive scheduler performs better than HVDF in terms of SR as 
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it schedules tasks in terms of their deadline even during near full loads (not based on their 

deadlines as in HVDF) . However, during overloads both HVDF and proposed adaptive schemes 

maintain the same VR as both switch over to value-based scheduling schemes. 
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Figure 5.3 Performance of the implemented schedulers (uniprocessor sys-
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The feedback invocation interval (MMJnvocationJnterval) will also affect scheduler's per-

formance as a high feedback rate makes the system more sensitive to transient changes in the 

system, increasing the run-time overheads, while a low feedback rate decreases the system's 

sensitivity to change in workload, yielding poor performance. The effect of invocation interval 
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on SR and VR was studied for various values of (MMJ.nvocationJ.nterval) for a full (100%) 

load and the results are given in Figure 5.4. It can be seen from the figure that scheduler 

yields better result in terms of VR and SR, when F S is calculated in period of scheduling of 

every 10 tasks for current experiment setup, which does not introduce too much overhead due 

to feedback and also does not decrease the system's sensitivity to change in workload. 
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CHAPTER 6. Conclusions 

In this thesis, we have identified two issues in dynamic scheduling for multiprocessor real-

time systems and used value-based scheduling techniques to address these issues. The first issue 

addressed was to capture the schedulability-reliability tradeoff in real-time systems. We have 

proposed a dynamic value-based scheduler for multiprocessor real-time systems, which aims to 

maximize the overall PI of the system. The proposed scheduler has two components: Combi-

nation Selection and Order Selection algorithms. We study the effectiveness of the proposed 

scheduling algorithm (for various combinations of the components) through simulation studies 

by comparing the value obtained by scheduling a feasible task set to the value generated during 

its generation, by varying K and L parameters. We find that a careful selection of K and L 

parameter pair can yield high performance. We find the reduced search algorithm maintains 

a good value ratio incurring less search cost, which is important for dynamic schedulers. 

The second issue addressed in this thesis is the problem of maintaining high system value 

with minimum deadline misses for various workloads. For this problem, we have proposed 

an adaptive value-based scheduler that switches its scheduling behavior from deadline-based 

scheduling to value-based scheduling and vice versa based on system's workload. The per-

formance of the proposed adaptive value-based scheduler was studied using extensive simula-

tions for various range of loads in a homogeneous computing environment and was found that 

the proposed scheduler maintained a high system value while maintaining high success ratio 

(schedulability). Further, we have proposed two adaptive value-based scheduling approaches 

for heterogeneous computing systems, Basic and Integrated Heterogeneous Schedulers, which 

differ only in their nature of processor selection. The performance of these schedulers were 

studied for a wide range of workloads. It was found that the basic scheduler performs better 
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than the integrated schedulers during high loads and performs comparable to the latter during 

underloads and near full loads. Further, the former involves less run-time complexity than 

the latter and hence we conclude that the Basic scheduler can perform better as a dynamic 

value-based scheduler in a heterogeneous environment for wide range of workloads. 

We have implemented the proposed adaptive value-based scheme in RT-Linux. We have 

verified the implementation by comparing its performance with the simulated scheduler for 

various workloads. Further, the performance of the implemented scheduler was compared with 

EDF and HVDF scheduler and was found that the proposed scheduler performs better than 

EDF in terms of value-ratio for all workloads and performs better than HVDF in terms of 

success ratio for near full loads. Further, the effect of feedback invocation interval was studied 

and was observed that the system needs to maintain a feedback invocation interval that is not 

too low or too high for good performance. 

Future Work: The future work that can compliment the works presented in thesis can in-

clude the following: (1) Investigation of adaptive scheduling schemes that can capture the 

schedulability-reliability tradeoff in real-time systems, (2) Investigation of multiple task exten-

sion scheduling schemes under different real-time scheduling contexts and (3) in the context of 

heterogeneous computing scheduling, investigation of new integrated schedulers that can per-

form better than the existing integrated and basic scheduling heuristics can be a good research 

problem. 
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